Coverage Policy Manual
Policy #: 2012068
Category: Laboratory
Initiated: November 2012
Last Review: September 2023
  Genetic Test: Preconception or Prenatal Testing as a Carrier Screen

Description:
The goal of carrier screening is to detect serious diseases in at-risk couples. Carrier screening is performed to identify individuals at risk of having offspring with inherited recessive single-gene disorders. Carriers are usually not at risk of developing the disease but can pass pathogenic variants to their offspring. Carrier testing may be performed in the prenatal or preconception periods.
 
Inherited Recessive Disorders
There are more than 1300 inherited recessive disorders (autosomal or X-linked) that affect 30 out of every 10,000 children (Henneman, 2016). Some diseases have limited impact on either length or quality of life, while others are uniformly fatal in childhood.
 
Targeted Carrier Screening
Carrier screening tests asymptomatic individuals in order to identify those who are heterozygous for serious or lethal single-gene disorders. The purpose of screening is to determine the risk of conceiving an affected child and "to optimize pregnancy outcomes based on personal preferences and values (Edwards, 2015). Risk-based carrier screening is performed in individuals having an increased risk based on population carrier prevalence, or personal or family history. Conditions selected for screening can be based on ethnicities at high-risk or may be panethnic. An example of effective ethnicity-based screening involves Tay-Sachs disease, with a 90% reduction in the disease following the introduction of carrier screening in the 1970s in the U.S. and Canada (Kaback, 2000). An example of panethnic screening involves cystic fibrosis when the American College of Obstetricians and Gynecologists (ACOG) noted that ethnic intermarriage was increasing in the U.S. and recommended panethnic cystic fibrosis carrier screening in 2005 (Banda 2015; Grant, 2002; ACOG, 2005).
 
Non-targeted Carrier Screening
Non-targeted carrier screening involves screening individuals or couples for disorders in many genes (up to 100s) by next-generation sequencing. Non-targeted carrier screening panels may screen for diseases that are present with increased frequency in specific populations but also include a wide range of diseases for which the patient is not at increased risk of being a carrier. Arguments for non-targeted carrier screening include the potential to assess ethnicity, identify more potential conditions, efficiency, and cost. The conditions included in non-targeted carrier screening panels are not standardized and the panels may include many conditions not routinely evaluated and for which there are no existing professional guidelines.
 
Regulatory Status
Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments. Laboratories that offer laboratory-developed tests must be licensed by Clinical Laboratory Improvement Amendments for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.
 
A number of commercially available genetic tests exist for carrier screening. They range from testing for individual diseases to small panels designed to address testing based on ethnicity as recommended by practice guidelines (ACOG, ACMG ), to large non-targeted panels that test for numerous diseases.
 
Myriad's Foresight Carrier Screen  provides preconception/prenatal screening in men and women for more than 175 conditions that could be passed on to a child, providing information for pregnancy planning and management. Testing is performed using full-exon sequencing and panel-wide deletion calling.  
 
Progenity offers prenatal carrier screening tests. The Progenity Standard Panel tests for carrier status of 29 hereditary disorders. The Progenity Global Panel tests for carrier status of 200+ hereditary disorders that typically affect health in infancy or childhood.
 
The Horizon Carrier Screen tests for up to 274 autosomal-recessive and X-linked genetic conditions.
 
Coding
There is no specific code for this test. The following codes may be used to bill for this test: 81400, 81401, 81402, 81403, 81404, 81405, 81406, 81407, 81408 81200, 81209, 81220, 81221, 81222, 81223, 81241, 81242, 81243, 81244, 81250, 81251, 81252, 81253, 81255, 81256, 81257, 81260, 81290, 81291, 81332, 81330, 81479  
 
Related policies:
2012049 Genetic Test: Prenatal Analysis of Fetal DNA in Maternal Blood to Detect Fetal Aneuploidy
2015009

Policy/
Coverage:
Effective August 2022
 
Does Not Meet Primary Coverage Criteria Or Is Investigational For Contracts Without Primary Coverage Criteria
 
Preconception or prenatal testing for carrier screening using the Counsyl Foresight™ Carrier Screen, the Progenity Preparent Carrier Screen or any other carrier screening panels or screening tests for which there is not an established policy of coverage does not meet member benefit certificate primary coverage criteria that there be scientific evidence of effectiveness in improving health outcomes.
 
For members with contracts without primary coverage criteria, preconception or prenatal testing for carrier screening using the Counsyl Foresight™ Carrier Screen, the Progenity Preparent Carrier Screen or any other carrier screening panels or screening tests for which there is not an established policy of coverage is considered investigational. Investigational services are specific contract exclusions in most member benefit certificates of coverage.   
 
Effective August 2018 through July 2022
 
Does Not Meet Primary Coverage Criteria Or Is Investigational For Contracts Without Primary Coverage Criteria
 
Preconception or prenatal testing for carrier screening using the Counsyl Foresight™ Carrier Screen, the Progenity Preparent Carrier Screen or any other carrier screening panel test does not meet member benefit certificate primary coverage criteria that there be scientific evidence of effectiveness in improving health outcomes.
 
For members with contracts without primary coverage criteria, preconception or prenatal testing for carrier screening using the Counsyl Foresight™ Carrier Screen, the Progenity Preparent Carrier Screen or any other carrier screening panel test is considered investigational. Investigational services are specific contract exclusions in most member benefit certificates of coverage.   
 
Effective December 2017 - July 2018
Universal Genetic Testing (Counsyl) does not meet member benefit certificate primary coverage criteria that there be scientific evidence of effectiveness in improving health outcomes.
 
For contracts without primary coverage criteria, Universal Genetic Test (Counsyl) is considered investigational.  Investigational services are specific contract exclusions in most member benefit certificates of coverage.
 

Rationale:
The Universal Genetic Test marketed by Counsyl, Redwood City, CA, uses targeted DNA mutation analysis to simultaneously test an individual or couple for over 100 genetic disorders.  Couples may learn their probability of conceiving an affected child while individuals may discover if they are carriers.  Counsyl is marketing this test to consumers directly through the Internet as well as through medical centers in the U.S.
 
According to the Food and Drug Administration (FDA), which regulates the manufacturers of genetic tests, and the Centers for Disease Control and Prevention (CDC), which promotes health and quality of life. some genetic tests offered directly to consumers lack scientific validity, while the results of other genetic tests are only meaningful in the context of a full medical evaluation,
 
American College of Medical Genetics (ACMG) published a “Statement on Direct-to-Consumer (DTC) Genetic Testing” (2008) which lists points on what they consider the “minimum requirement for any genetic testing protocol.”  With the Universal genetic test, there is an enhanced need for genetic consultation for persons to have full informed consent prior to testing as well as post-test genetic consultation for persons who are found to be carriers for each of the diseases tested.
 
Even though more than 100 genetic disorders are included in the Universal Genetic Test, some key components are omitted unless specifically ordered by the physician.  For example, the Fragile X syndrome which is known to be the most common form of inherited mental retardation (Knight,1996), is not included as carrier testing.
 
Srinivasan and colleagues (2010) published information on the Counsyl Universal Genetic Test stating that Mendelian disorders are individually rare but collectively common, forming a 'long tail' of genetic disease.   The Universal Genetic Test is a non-invasive, saliva-based assay for more than 100 Mendelian diseases across all major population groups.  According to the authors the test “has been exhaustively validated with a median of 147 positive and 525 negative samples per variant, demonstrating a multiplex assay whose performance compares favorably with the previous standard of care, namely blood-based single-gene carrier tests”.   Because the assay is inexpensive and requires only a saliva sample, it is now increasingly feasible to make carrier testing a routine part of preconception care.
 
In 2012 Lazarin and colleagues (Dept of Genetics, Counsyl) reported on recent developments in genomics that they believe have led to expanded carrier screening panels capable of assessing hundreds of causal mutations for genetic disease.  This new technology allows simultaneous measurement of carrier frequencies for many diseases. As the resultant rank-ordering of carrier frequencies impacts the design and prioritization of screening programs, the accuracy of this ranking is a public health concern.  
 
A total of 23,453 individuals from many obstetric, genetics, and infertility clinics were referred for routine recessive disease carrier screening. Multiplex carrier screening was performed and results were aggregated for this study.  Twenty-four percent of individuals were identified as carriers for at least one of 108 disorders, and 5.2% were carriers for multiple disorders.   The study also provided information on the clinical considerations associated with routine use of expanded panels and provides support for a pan-ethnic screening paradigm that minimizes the use of "racial" categories by the physician.
 
Hayes Review:
The Counsyl Universal Carrier Test reportedly tests for carrier status for more than 100 Mendelian disorders. Using a multiple molecular inversion probe assay, 925 probes for the most common variants in different ethnic groups are tested. The single validation study used a combination of 131 commercial reference samples along with 454 synthetic patient specimens for variants with no commercial reference source. Each reference sample was tested 3 times with a total of 284,485 genotypes tested in the validation. This was achieved by creating “pools” of controls; that is, different controls were combined into single samples for testing. For each variant, there was a median of 147 positive and 525 negative samples tested. The authors reported a sensitivity of > 99.9% and specificity of > 99.5%, with a false-positive rate of < 0.4% and false-negative rate of 0.002%. Although this validation appears robust, there are some concerns.
None of the specimens tested in the validation were actual patient specimens collected in the same way as they are collected for the clinical test, which uses DNA extracted from a saliva specimen. Therefore, it is impossible to know if the test will perform as well with actual patient specimens. Secondly, it is not clear what the effect of using control pools in the validation was and whether individual specimens would perform in the same way. Finally, there is no independent validation of the assay on another dataset to show that the results can be replicated. Until these weaknesses are addressed, the analytical validity of this assay cannot be adequately assessed.
 
There are a number of ethical issues associated with the assay, the principal one of which is informed consent. It is not clear how potential patients would be counseled to ensure that they understand the risks, benefits, and limitations of carrier testing for > 100 different disorders. Without such counseling, true informed consent is not possible. In addition, there is no indication of how abnormal results would be communicated to patients and whether counseling would be available for such patients. Furthermore, although the Counsyl test includes variants for > 100 Mendelian disorders, there are some notable exclusions. For example, testing for alpha-thalassemia is not included and there is limited screening for beta-thalassemia. Since these are common disorders in certain ethnic groups (alpha-thalassemia in Southeast Asians, among others; and beta-thalassemia in individuals of Mediterranean origin, among others), further testing would be necessary in these ethnic groups. Finally, the Counsyl website claims that the genetic disorders screened are “preventable,” but does not clarify that the primary means of prevention would be termination of affected pregnancies, a solution that is unlikely to be acceptable to all potential patients.
 
There is insufficient published evidence to perform a Genetic Test Evaluation (GTE) health technology assessment of the Counsyl Universal Genetic test; therefore, it cannot be recommended for adoption or use at this time. The main evidence deficiencies for the Counsyl test are insufficient data on analytical validity, clinical validity, and clinical utility.
 
The Universal genetic test has not been reviewed by the FDA.  
 
2014 Update
A literature search conducted using the MEDLINE database through October 2014 did not reveal any new information that would prompt a change in the coverage statement.
  
2015 Update
A literature search conducted through October 2015 did not reveal any new information that would prompt a change in the coverage statement.
 
2016 Update
A literature search conducted through October 2016 did not reveal any new information that would prompt a change in the coverage statement.
 
2017 Update
 
This policy was originally developed to address the Universal Gene Test offered by Counsyl. The test is now marketed as the Foresight™ Carrier Screen. The policy is updated to include the new test name and methodology.
 
A literature search conducted through October 2017 did not reveal any new literature that would prompt a change in the coverage status. There were no published studies identified using the Counsyl Foresight Carrier Screen. There is a lack of evidence on the clinical validity and clinical utility of this testing and therefore does not meet member benefit certificate primary coverage criteria.
  
2019 Update
A literature search was conducted through August 2019.  There was no new information identified that would prompt a change in the coverage statement.  
 
2020 Update
Annual policy review completed with a literature search using the MEDLINE database through August 2020. No new literature was identified that would prompt a change in the coverage statement.
 
2021 Update
Annual policy review completed with a literature search using the MEDLINE database through August 2021. No new literature was identified that would prompt a change in the coverage statement.
 
2022 Update
Annual policy review completed with a literature search using the MEDLINE database through August 2022. No new literature was identified that would prompt a change in the coverage statement.
 
2023 Update
Annual policy review completed with a literature search using the MEDLINE database through August 2023. No new literature was identified that would prompt a change in the coverage statement. The key identified literature is summarized below.
 
A 2023 systematic review that included studies of both targeted and non-targeted carrier screening found that carriers of conditions classified as having a more severe impact were more likely to terminate pregnancy or opt for in vitro fertilization with preimplantation genetic testing (Wang, 2023).

CPT/HCPCS:
0400UObstetrics (expanded carrier screening), 145 genes by next-generation sequencing, fragment analysis and multiplex ligation-dependent probe amplification, DNA, reported as carrier positive or negative
81200ASPA (aspartoacylase) (eg, Canavan disease) gene analysis, common variants (eg, E285A, Y231X)
81209BLM (Bloom syndrome, RecQ helicase like) (eg, Bloom syndrome) gene analysis, 2281del6ins7 variant
81220CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; common variants (eg, ACMG/ACOG guidelines)
81221CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; known familial variants
81222CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; duplication/deletion variants
81223CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; full gene sequence
81241F5 (coagulation factor V) (eg, hereditary hypercoagulability) gene analysis, Leiden variant
81242FANCC (Fanconi anemia, complementation group C) (eg, Fanconi anemia, type C) gene analysis, common variant (eg, IVS4+4A&gt;T)
81243FMR1 (fragile X mental retardation 1) (eg, fragile X mental retardation) gene analysis; evaluation to detect abnormal (eg, expanded) alleles
81244FMR1 (fragile X mental retardation 1) (eg, fragile X mental retardation) gene analysis; characterization of alleles (eg, expanded size and promoter methylation status)
81250G6PC (glucose 6 phosphatase, catalytic subunit) (eg, Glycogen storage disease, type 1a, von Gierke disease) gene analysis, common variants (eg, R83C, Q347X)
81251GBA (glucosidase, beta, acid) (eg, Gaucher disease) gene analysis, common variants (eg, N370S, 84GG, L444P, IVS2+1G&gt;A)
81252GJB2 (gap junction protein, beta 2, 26kDa, connexin 26) (eg, nonsyndromic hearing loss) gene analysis; full gene sequence
81253GJB2 (gap junction protein, beta 2, 26kDa, connexin 26) (eg, nonsyndromic hearing loss) gene analysis; known familial variants
81255HEXA (hexosaminidase A [alpha polypeptide]) (eg, Tay Sachs disease) gene analysis, common variants (eg, 1278insTATC, 1421+1G&gt;C, G269S)
81256HFE (hemochromatosis) (eg, hereditary hemochromatosis) gene analysis, common variants (eg, C282Y, H63D)
81257HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; common deletions or variant (eg, Southeast Asian, Thai, Filipino, Mediterranean, alpha3.7, alpha4.2, alpha20.5, Constant Spring)
81260IKBKAP (inhibitor of kappa light polypeptide gene enhancer in B cells, kinase complex associated protein) (eg, familial dysautonomia) gene analysis, common variants (eg, 2507+6T&gt;C, R696P)
81290MCOLN1 (mucolipin 1) (eg, Mucolipidosis, type IV) gene analysis, common variants (eg, IVS3 2A&gt;G, del6.4kb)
81291MTHFR (5,10 methylenetetrahydrofolate reductase) (eg, hereditary hypercoagulability) gene analysis, common variants (eg, 677T, 1298C)
81330SMPD1(sphingomyelin phosphodiesterase 1, acid lysosomal) (eg, Niemann Pick disease, Type A) gene analysis, common variants (eg, R496L, L302P, fsP330)
81332SERPINA1 (serpin peptidase inhibitor, clade A, alpha 1 antiproteinase, antitrypsin, member 1) (eg, alpha 1 antitrypsin deficiency), gene analysis, common variants (eg, *S and *Z)
81400Molecular pathology procedure, Level 1 (eg, identification of single germline variant [eg, SNP] by techniques such as restriction enzyme digestion or melt curve analysis)
81401Molecular pathology procedure, Level 2 (eg, 2-10 SNPs, 1 methylated variant, or 1 somatic variant [typically using nonsequencing target variant analysis], or detection of a dynamic mutation disorder/triplet repeat) ABCC8 (ATP-binding cassette, sub-family C [CFTR/MRP], member 8) (eg, familial hyperinsulinism), common variants (eg, c.3898-9G&gt;A [c.3992-9G&gt;A], F1388del) ABL1 (ABL proto-oncogene 1, non-receptor tyrosine kinase) (eg, acquired imatinib resistance), T315I variant ACADM (acyl-CoA dehydrogenase, C-4 to C-12 straight chain, MCAD) (eg, medium chain acyl dehydrogenase deficiency), commons variants (eg, K304E, Y42H) ADRB2 (adrenergic beta-2 receptor surface) (eg, drug metabolism), common variants (eg, G16R, Q27E) APOB (apolipoprotein B) (eg, familial hypercholesterolemia type B), common variants (eg, R3500Q, R3500W) APOE (apolipoprotein E) (eg, hyperlipoproteinemia type III, cardiovascular disease, Alzheimer disease), common variants (eg, *2, *3, *4) CBFB/MYH11 (inv(16)) (eg, acute myeloid leukemia), qualitative, and quantitative, if performed CBS (cystathionine-beta-synthase) (eg, homocystinuria, cystathionine beta-synthase deficiency), common variants (eg, I278T, G307S) CFH/ARMS2 (complement factor H/age-related maculopathy susceptibility 2) (eg, macular degeneration), common variants (eg, Y402H [CFH], A69S [ARMS2]) DEK/NUP214 (t(6;9)) (eg, acute myeloid leukemia), translocation analysis, qualitative, and quantitative, if performed E2A/PBX1 (t(1;19)) (eg, acute lymphocytic leukemia), translocation analysis, qualitative, and quantitative, if performed EML4/ALK (inv(2)) (eg, non-small cell lung cancer), translocation or inversion analysis ETV6/RUNX1 (t(12;21)) (eg, acute lymphocytic leukemia), translocation analysis, qualitative, and quantitative, if performed EWSR1/ATF1 (t(12;22)) (eg, clear cell sarcoma), translocation analysis, qualitative, and quantitative, if performed EWSR1/ERG (t(21;22)) (eg, Ewing sarcoma/peripheral neuroectodermal tumor), translocation analysis, qualitative, and quantitative, if performed EWSR1/FLI1 (t(11;22)) (eg, Ewing sarcoma/peripheral neuroectodermal tumor), translocation analysis, qualitative, and quantitative, if performed EWSR1/WT1 (t(11;22)) (eg, desmoplastic small round cell tumor), translocation analysis, qualitative, and quantitative, if performed F11 (coagulation factor XI) (eg, coagulation disorder), common variants (eg, E117X [Type II], F283L [Type III], IVS14del14, and IVS14+1G&gt;A [Type I]) FGFR3 (fibroblast growth factor receptor 3) (eg, achondroplasia, hypochondroplasia), common variants (eg, 1138G&gt;A, 1138G&gt;C, 1620C&gt;A, 1620C&gt;G) FIP1L1/PDGFRA (del[4q12]) (eg, imatinib-sensitive chronic eosinophilic leukemia), qualitative, and quantitative, if performed FLG (filaggrin) (eg, ichthyosis vulgaris), common variants (eg, R501X, 2282del4, R2447X, S3247X, 3702delG) FOXO1/PAX3 (t(2;13)) (eg, alveolar rhabdomyosarcoma), translocation analysis, qualitative, and quantitative, if performed FOXO1/PAX7 (t(1;13)) (eg, alveolar rhabdomyosarcoma), translocation analysis, qualitative, and quantitative, if performed FUS/DDIT3 (t(12;16)) (eg, myxoid liposarcoma), translocation analysis, qualitative, and quantitative, if performed GALC (galactosylceramidase) (eg, Krabbe disease), common variants (eg, c.857G&gt;A, 30-kb deletion) GALT (galactose-1-phosphate uridylyltransferase) (eg, galactosemia), common variants (eg, Q188R, S135L, K285N, T138M, L195P, Y209C, IVS2-2A&gt;G, P171S, del5kb, N314D, L218L/N314D) H19 (imprinted maternally expressed transcript [non-protein coding]) (eg, Beckwith-Wiedemann syndrome), methylation analysis IGH@/BCL2 (t(14;18)) (eg, follicular lymphoma), translocation analysis; single breakpoint (eg, major breakpoint region [MBR] or minor cluster region [mcr]), qualitative or quantitative (When both MBR and mcr breakpoints are performed, use 81278) KCNQ1OT1 (KCNQ1 overlapping transcript 1 [non-protein coding]) (eg, Beckwith-Wiedemann syndrome), methylation analysis LINC00518 (long intergenic non-protein coding RNA 518) (eg, melanoma), expression analysis LRRK2 (leucine-rich repeat kinase 2) (eg, Parkinson disease), common variants (eg, R1441G, G2019S, I2020T) MED12 (mediator complex subunit 12) (eg, FG syndrome type 1, Lujan syndrome), common variants (eg, R961W, N1007S) MEG3/DLK1 (maternally expressed 3 [non-protein coding]/delta-like 1 homolog [Drosophila]) (eg, intrauterine growth retardation), methylation analysis MLL/AFF1 (t(4;11)) (eg, acute lymphoblastic leukemia), translocation analysis, qualitative, and quantitative, if performed MLL/MLLT3 (t(9;11)) (eg, acute myeloid leukemia), translocation analysis, qualitative, and quantitative, if performed MT-ATP6 (mitochondrially encoded ATP synthase 6) (eg, neuropathy with ataxia and retinitis pigmentosa [NARP], Leigh syndrome), common variants (eg, m.8993T&gt;G, m.8993T&gt;C) MT-ND4, MT-ND6 (mitochondrially encoded NADH dehydrogenase 4, mitochondrially encoded NADH dehydrogenase 6) (eg, Leber hereditary optic neuropathy [LHON]), common variants (eg, m.11778G&gt;A, m.3460G&gt;A, m.14484T&gt;C) MT-ND5 (mitochondrially encoded tRNA leucine 1 [UUA/G], mitochondrially encoded NADH dehydrogenase 5) (eg, mitochondrial encephalopathy with lactic acidosis and stroke-like episodes [MELAS]), common variants (eg, m.3243A&gt;G, m.3271T&gt;C, m.3252A&gt;G, m.13513G&gt;A) MT-RNR1 (mitochondrially encoded 12S RNA) (eg, nonsyndromic hearing loss), common variants (eg, m.1555A&gt;G, m.1494C&gt;T) MT-TK (mitochondrially encoded tRNA lysine) (eg, myoclonic epilepsy with ragged-red fibers [MERRF]), common variants (eg, m.8344A&gt;G, m.8356T&gt;C) MT-TL1 (mitochondrially encoded tRNA leucine 1 [UUA/G]) (eg, diabetes and hearing loss), common variants (eg, m.3243A&gt;G, m.14709 T&gt;C) MT-TL1 MT-TS1, MT-RNR1 (mitochondrially encoded tRNA serine 1 [UCN], mitochondrially encoded 12S RNA) (eg, nonsyndromic sensorineural deafness [including aminoglycoside-induced nonsyndromic deafness]), common variants (eg, m.7445A&gt;G, m.1555A&gt;G) MUTYH (mutY homolog [E. coli]) (eg, MYH-associated polyposis), common variants (eg, Y165C, G382D) NOD2 (nucleotide-binding oligomerization domain containing 2) (eg, Crohn's disease, Blau syndrome), common variants (eg, SNP 8, SNP 12, SNP 13) NPM1/ALK (t(2;5)) (eg, anaplastic large cell lymphoma), translocation analysis PAX8/PPARG (t(2;3) (q13;p25)) (eg, follicular thyroid carcinoma), translocation analysis PRAME (preferentially expressed antigen in melanoma) (eg, melanoma), expression analysis PRSS1 (protease, serine, 1 [trypsin 1]) (eg, hereditary pancreatitis), common variants (eg, N29I, A16V, R122H) PYGM (phosphorylase, glycogen, muscle) (eg, glycogen storage disease type V, McArdle disease), common variants (eg, R50X, G205S) RUNX1/RUNX1T1 (t(8;21)) (eg, acute myeloid leukemia) translocation analysis, qualitative, and quantitative, if performed SS18/SSX1 (t(X;18)) (eg, synovial sarcoma), translocation analysis, qualitative, and quantitative, if performed SS18/SSX2 (t(X;18)) (eg, synovial sarcoma), translocation analysis, qualitative, and quantitative, if performed VWF (von Willebrand factor) (eg, von Willebrand disease type 2N), common variants (eg, T791M, R816W, R854Q)
81402Molecular pathology procedure, Level 3 (eg, &gt;10 SNPs, 2-10 methylated variants, or 2-10 somatic variants [typically using non-sequencing target variant analysis], immunoglobulin and T-cell receptor gene rearrangements, duplication/deletion variants of 1 exon, loss of heterozygosity [LOH], uniparental disomy [UPD]) Chromosome 1p-/19q- (eg, glial tumors), deletion analysis Chromosome 18q- (eg, D18S55, D18S58, D18S61, D18S64, and D18S69) (eg, colon cancer), allelic imbalance assessment (ie, loss of heterozygosity) COL1A1/PDGFB (t(17;22)) (eg, dermatofibrosarcoma protuberans), translocation analysis, multiple breakpoints, qualitative, and quantitative, if performed CYP21A2 (cytochrome P450, family 21, subfamily A, polypeptide 2) (eg, congenital adrenal hyperplasia, 21-hydroxylase deficiency), common variants (eg, IVS2-13G, P30L, I172N, exon 6 mutation cluster [I235N, V236E, M238K], V281L, L307FfsX6, Q318X, R356W, P453S, G110VfsX21, 30-kb deletion variant) ESR1/PGR (receptor 1/progesterone receptor) ratio (eg, breast cancer) MEFV (Mediterranean fever) (eg, familial Mediterranean fever), common variants (eg, E148Q, P369S, F479L, M680I, I692del, M694V, M694I, K695R, V726A, A744S, R761H) TRD@ (T cell antigen receptor, delta) (eg, leukemia and lymphoma), gene rearrangement analysis, evaluation to detect abnormal clonal population Uniparental disomy (UPD) (eg, Russell-Silver syndrome, Prader-Willi/Angelman syndrome), short tandem repeat (STR) analysis
81403Molecular pathology procedure, Level 4 (eg, analysis of single exon by DNA sequence analysis, analysis of &gt;10 amplicons using multiplex PCR in 2 or more independent reactions, mutation scanning or duplication/deletion variants of 2-5 exons) ANG (angiogenin, ribonuclease, RNase A family, 5) (eg, amyotrophic lateral sclerosis), full gene sequence ARX (aristaless-related homeobox) (eg, X-linked lissencephaly with ambiguous genitalia, X-linked mental retardation), duplication/deletion analysis CEL (carboxyl ester lipase [bile salt-stimulated lipase]) (eg, maturity-onset diabetes of the young [MODY]), targeted sequence analysis of exon 11 (eg, c.1785delC, c.1686delT) CTNNB1 (catenin [cadherin-associated protein], beta 1, 88kDa) (eg, desmoid tumors), targeted sequence analysis (eg, exon 3) DAZ/SRY (deleted in azoospermia and sex determining region Y) (eg, male infertility), common deletions (eg, AZFa, AZFb, AZFc, AZFd) DNMT3A (DNA [cytosine-5-]-methyltransferase 3 alpha) (eg, acute myeloid leukemia), targeted sequence analysis (eg, exon 23) EPCAM (epithelial cell adhesion molecule) (eg, Lynch syndrome), duplication/deletion analysis F8 (coagulation factor VIII) (eg, hemophilia A), inversion analysis, intron 1 and intron 22A F12 (coagulation factor XII [Hageman factor]) (eg, angioedema, hereditary, type III; factor XII deficiency), targeted sequence analysis of exon 9 FGFR3 (fibroblast growth factor receptor 3) (eg, isolated craniosynostosis), targeted sequence analysis (eg, exon 7) (For targeted sequence analysis of multiple FGFR3 exons, use 81404) GJB1 (gap junction protein, beta 1) (eg, Charcot-Marie-Tooth X-linked), full gene sequence GNAQ (guanine nucleotide-binding protein G[q] subunit alpha) (eg, uveal melanoma), common variants (eg, R183, Q209) Human erythrocyte antigen gene analyses (eg, SLC14A1 [Kidd blood group], BCAM [Lutheran blood group], ICAM4 [Landsteiner-Wiener blood group], SLC4A1 [Diego blood group], AQP1 [Colton blood group], ERMAP [Scianna blood group], RHCE [Rh blood group, CcEe antigens], KEL [Kell blood group], DARC [Duffy blood group], GYPA, GYPB, GYPE [MNS blood group], ART4 [Dombrock blood group]) (eg, sickle-cell disease, thalassemia, hemolytic transfusion reactions, hemolytic disease of the fetus or newborn), common variants HRAS (v-Ha-ras Harvey rat sarcoma viral oncogene homolog) (eg, Costello syndrome), exon 2 sequence KCNC3 (potassium voltage-gated channel, Shaw-related subfamily, member 3) (eg, spinocerebellar ataxia), targeted sequence analysis (eg, exon 2) KCNJ2 (potassium inwardly-rectifying channel, subfamily J, member 2) (eg, Andersen-Tawil syndrome), full gene sequence KCNJ11 (potassium inwardly-rectifying channel, subfamily J, member 11) (eg, familial hyperinsulinism), full gene sequence Killer cell immunoglobulin-like receptor (KIR) gene family (eg, hematopoietic stem cell transplantation), genotyping of KIR family genes Known familial variant not otherwise specified, for gene listed in Tier 1 or Tier 2, or identified during a genomic sequencing procedure, DNA sequence analysis, each variant exon (For a known familial variant that is considered a common variant, use specific common variant Tier 1 or Tier 2 code) MC4R (melanocortin 4 receptor) (eg, obesity), full gene sequence MICA (MHC class I polypeptide-related sequence A) (eg, solid organ transplantation), common variants (eg, *001, *002) MT-RNR1 (mitochondrially encoded 12S RNA) (eg, nonsyndromic hearing loss), full gene sequence MT-TS1 (mitochondrially encoded tRNA serine 1) (eg, nonsyndromic hearing loss), full gene sequence NDP (Norrie disease [pseudoglioma]) (eg, Norrie disease), duplication/deletion analysis NHLRC1 (NHL repeat containing 1) (eg, progressive myoclonus epilepsy), full gene sequence PHOX2B (paired-like homeobox 2b) (eg, congenital central hypoventilation syndrome), duplication/deletion analysis PLN (phospholamban) (eg, dilated cardiomyopathy, hypertrophic cardiomyopathy), full gene sequence RHD (Rh blood group, D antigen) (eg, hemolytic disease of the fetus and newborn, Rh maternal/fetal compatibility), deletion analysis (eg, exons 4, 5, and 7, pseudogene) RHD (Rh blood group, D antigen) (eg, hemolytic disease of the fetus and newborn, Rh maternal/fetal compatibility), deletion analysis (eg, exons 4, 5, and 7, pseudogene), performed on cell-free fetal DNA in maternal blood (For human erythrocyte gene analysis of RHD, use a separate unit of 81403) SH2D1A (SH2 domain containing 1A) (eg, X-linked lymphoproliferative syndrome), duplication/deletion analysis TWIST1 (twist homolog 1 [Drosophila]) (eg, Saethre-Chotzen syndrome), duplication/deletion analysis UBA1 (ubiquitin-like modifier activating enzyme 1) (eg, spinal muscular atrophy, X-linked), targeted sequence analysis (eg, exon 15) VHL (von Hippel-Lindau tumor suppressor) (eg, von Hippel-Lindau familial cancer syndrome), deletion/duplication analysis VWF (von Willebrand factor) (eg, von Willebrand disease types 2A, 2B, 2M), targeted sequence analysis (eg, exon 28)
81404Molecular pathology procedure, Level 5 (eg, analysis of 2-5 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 6-10 exons, or characterization of a dynamic mutation disorder/triplet repeat by Southern blot analysis) ACADS (acyl-CoA dehydrogenase, C-2 to C-3 short chain) (eg, short chain acyl-CoA dehydrogenase deficiency), targeted sequence analysis (eg, exons 5 and 6) AQP2 (aquaporin 2 [collecting duct]) (eg, nephrogenic diabetes insipidus), full gene sequence ARX (aristaless related homeobox) (eg, X-linked lissencephaly with ambiguous genitalia, X-linked mental retardation), full gene sequence AVPR2 (arginine vasopressin receptor 2) (eg, nephrogenic diabetes insipidus), full gene sequence BBS10 (Bardet-Biedl syndrome 10) (eg, Bardet-Biedl syndrome), full gene sequence BTD (biotinidase) (eg, biotinidase deficiency), full gene sequence C10orf2 (chromosome 10 open reading frame 2) (eg, mitochondrial DNA depletion syndrome), full gene sequence CAV3 (caveolin 3) (eg, CAV3-related distal myopathy, limb-girdle muscular dystrophy type 1C), full gene sequence CD40LG (CD40 ligand) (eg, X-linked hyper IgM syndrome), full gene sequence CDKN2A (cyclin-dependent kinase inhibitor 2A) (eg, CDKN2A-related cutaneous malignant melanoma, familial atypical mole-malignant melanoma syndrome), full gene sequence CLRN1 (clarin 1) (eg, Usher syndrome, type 3), full gene sequence COX6B1 (cytochrome c oxidase subunit VIb polypeptide 1) (eg, mitochondrial respiratory chain complex IV deficiency), full gene sequence CPT2 (carnitine palmitoyltransferase 2) (eg, carnitine palmitoyltransferase II deficiency), full gene sequence CRX (cone-rod homeobox) (eg, cone-rod dystrophy 2, Leber congenital amaurosis), full gene sequence CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1) (eg, primary congenital glaucoma), full gene sequence EGR2 (early growth response 2) (eg, Charcot-Marie-Tooth), full gene sequence EMD (emerin) (eg, Emery-Dreifuss muscular dystrophy), duplication/deletion analysis EPM2A (epilepsy, progressive myoclonus type 2A, Lafora disease [laforin]) (eg, progressive myoclonus epilepsy), full gene sequence FGF23 (fibroblast growth factor 23) (eg, hypophosphatemic rickets), full gene sequence FGFR2 (fibroblast growth factor receptor 2) (eg, craniosynostosis, Apert syndrome, Crouzon syndrome), targeted sequence analysis (eg, exons 8, 10) FGFR3 (fibroblast growth factor receptor 3) (eg, achondroplasia, hypochondroplasia), targeted sequence analysis (eg, exons 8, 11, 12, 13) FHL1 (four and a half LIM domains 1) (eg, Emery-Dreifuss muscular dystrophy), full gene sequence FKRP (fukutin related protein) (eg, congenital muscular dystrophy type 1C [MDC1C], limb-girdle muscular dystrophy [LGMD] type 2I), full gene sequence FOXG1 (forkhead box G1) (eg, Rett syndrome), full gene sequence FSHMD1A (facioscapulohumeral muscular dystrophy 1A) (eg, facioscapulohumeral muscular dystrophy), evaluation to detect abnormal (eg, deleted) alleles FSHMD1A (facioscapulohumeral muscular dystrophy 1A) (eg, facioscapulohumeral muscular dystrophy), characterization of haplotype(s) (ie, chromosome 4A and 4B haplotypes) GH1 (growth hormone 1) (eg, growth hormone deficiency), full gene sequence GP1BB (glycoprotein Ib [platelet], beta polypeptide) (eg, Bernard-Soulier syndrome type B), full gene sequence (For common deletion variants of alpha globin 1 and alpha globin 2 genes, use 81257) HNF1B (HNF1 homeobox B) (eg, maturity-onset diabetes of the young [MODY]), duplication/deletion analysis HRAS (v-Ha-ras Harvey rat sarcoma viral oncogene homolog) (eg, Costello syndrome), full gene sequence HSD3B2 (hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2) (eg, 3-beta-hydroxysteroid dehydrogenase type II deficiency), full gene sequence HSD11B2 (hydroxysteroid [11-beta] dehydrogenase 2) (eg, mineralocorticoid excess syndrome), full gene sequence HSPB1 (heat shock 27kDa protein 1) (eg, Charcot-Marie-Tooth disease), full gene sequence INS (insulin) (eg, diabetes mellitus), full gene sequence KCNJ1 (potassium inwardly-rectifying channel, subfamily J, member 1) (eg, Bartter syndrome), full gene sequence KCNJ10 (potassium inwardly-rectifying channel, subfamily J, member 10) (eg, SeSAME syndrome, EAST syndrome, sensorineural hearing loss), full gene sequence LITAF (lipopolysaccharide-induced TNF factor) (eg, Charcot-Marie-Tooth), full gene sequence MEFV (Mediterranean fever) (eg, familial Mediterranean fever), full gene sequence MEN1 (multiple endocrine neoplasia I) (eg, multiple endocrine neoplasia type 1, Wermer syndrome), duplication/deletion analysis MMACHC (methylmalonic aciduria [cobalamin deficiency] cblC type, with homocystinuria) (eg, methylmalonic acidemia and homocystinuria), full gene sequence MPV17 (MpV17 mitochondrial inner membrane protein) (eg, mitochondrial DNA depletion syndrome), duplication/deletion analysis NDP (Norrie disease [pseudoglioma]) (eg, Norrie disease), full gene sequence NDUFA1 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 1, 7.5kDa) (eg, Leigh syndrome, mitochondrial complex I deficiency), full gene sequence NDUFAF2 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, assembly factor 2) (eg, Leigh syndrome, mitochondrial complex I deficiency), full gene sequence NDUFS4 (NADH dehydrogenase [ubiquinone] Fe-S protein 4, 18kDa [NADH-coenzyme Q reductase]) (eg, Leigh syndrome, mitochondrial complex I deficiency), full gene sequence NIPA1 (non-imprinted in Prader-Willi/Angelman syndrome 1) (eg, spastic paraplegia), full gene sequence NLGN4X (neuroligin 4, X-linked) (eg, autism spectrum disorders), duplication/deletion analysis NPC2 (Niemann-Pick disease, type C2 [epididymal secretory protein E1]) (eg, Niemann-Pick disease type C2), full gene sequence NR0B1 (nuclear receptor subfamily 0, group B, member 1) (eg, congenital adrenal hypoplasia), full gene sequence PDX1 (pancreatic and duodenal homeobox 1) (eg, maturity-onset diabetes of the young [MODY]), full gene sequence PHOX2B (paired-like homeobox 2b) (eg, congenital central hypoventilation syndrome), full gene sequence PLP1 (proteolipid protein 1) (eg, Pelizaeus-Merzbacher disease, spastic paraplegia), duplication/deletion analysis PQBP1 (polyglutamine binding protein 1) (eg, Renpenning syndrome), duplication/deletion analysis PRNP (prion protein) (eg, genetic prion disease), full gene sequence PROP1 (PROP paired-like homeobox 1) (eg, combined pituitary hormone deficiency), full gene sequence PRPH2 (peripherin 2 [retinal degeneration, slow]) (eg, retinitis pigmentosa), full gene sequence PRSS1 (protease, serine, 1 [trypsin 1]) (eg, hereditary pancreatitis), full gene sequence RAF1 (v-raf-1 murine leukemia viral oncogene homolog 1) (eg, LEOPARD syndrome), targeted sequence analysis (eg, exons 7, 12, 14, 17) RET (ret proto-oncogene) (eg, multiple endocrine neoplasia, type 2B and familial medullary thyroid carcinoma), common variants (eg, M918T, 2647_2648delinsTT, A883F) RHO (rhodopsin) (eg, retinitis pigmentosa), full gene sequence RP1 (retinitis pigmentosa 1) (eg, retinitis pigmentosa), full gene sequence SCN1B (sodium channel, voltage-gated, type I, beta) (eg, Brugada syndrome), full gene sequence SCO2 (SCO cytochrome oxidase deficient homolog 2 [SCO1L]) (eg, mitochondrial respiratory chain complex IV deficiency), full gene sequence SDHC (succinate dehydrogenase complex, subunit C, integral membrane protein, 15kDa) (eg, hereditary paraganglioma-pheochromocytoma syndrome), duplication/deletion analysis SDHD (succinate dehydrogenase complex, subunit D, integral membrane protein) (eg, hereditary paraganglioma), full gene sequence SGCG (sarcoglycan, gamma [35kDa dystrophin-associated glycoprotein]) (eg, limb-girdle muscular dystrophy), duplication/deletion analysis SH2D1A (SH2 domain containing 1A) (eg, X-linked lymphoproliferative syndrome), full gene sequence SLC16A2 (solute carrier family 16, member 2 [thyroid hormone transporter]) (eg, specific thyroid hormone
81405Molecular pathology procedure, Level 6 (eg, analysis of 6-10 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 11-25 exons, regionally targeted cytogenomic array analysis) Cytogenomic constitutional targeted microarray analysis of chromosome 22q13 by interrogation of genomic regions for copy number and single nucleotide polymorphism (SNP) variants for chromosomal abnormalities (When performing cytogenomic [genome-wide] analysis, for constitutional chromosomal abnormalities. See 81228, 81229, 81349)
81406Molecular pathology procedure, Level 7 (eg, analysis of 11-25 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 26-50 exons) ACADVL (acyl-CoA dehydrogenase, very long chain) (eg, very long chain acyl-coenzyme A dehydrogenase deficiency), full gene sequence ACTN4 (actinin, alpha 4) (eg, focal segmental glomerulosclerosis), full gene sequence AFG3L2 (AFG3 ATPase family gene 3-like 2 [S. cerevisiae]) (eg, spinocerebellar ataxia), full gene sequence AIRE (autoimmune regulator) (eg, autoimmune polyendocrinopathy syndrome type 1), full gene sequence ALDH7A1 (aldehyde dehydrogenase 7 family, member A1) (eg, pyridoxine-dependent epilepsy), full gene sequence ANO5 (anoctamin 5) (eg, limb-girdle muscular dystrophy), full gene sequence ANOS1 (anosmin-1) (eg, Kallmann syndrome 1), full gene sequence APP (amyloid beta [A4] precursor protein) (eg, Alzheimer disease), full gene sequence ASS1 (argininosuccinate synthase 1) (eg, citrullinemia type I), full gene sequence ATL1 (atlastin GTPase 1) (eg, spastic paraplegia), full gene sequence ATP1A2 (ATPase, Na+/K+ transporting, alpha 2 polypeptide) (eg, familial hemiplegic migraine), full gene sequence ATP7B (ATPase, Cu++ transporting, beta polypeptide) (eg, Wilson disease), full gene sequence BBS1 (Bardet-Biedl syndrome 1) (eg, Bardet-Biedl syndrome), full gene sequence BBS2 (Bardet-Biedl syndrome 2) (eg, Bardet-Biedl syndrome), full gene sequence BCKDHB (branched-chain keto acid dehydrogenase E1, beta polypeptide) (eg, maple syrup urine disease, type 1B), full gene sequence BEST1 (bestrophin 1) (eg, vitelliform macular dystrophy), full gene sequence BMPR2 (bone morphogenetic protein receptor, type II [serine/threonine kinase]) (eg, heritable pulmonary arterial hypertension), full gene sequence BRAF (B-Raf proto-oncogene, serine/threonine kinase) (eg, Noonan syndrome), full gene sequence BSCL2 (Berardinelli-Seip congenital lipodystrophy 2 [seipin]) (eg, Berardinelli-Seip congenital lipodystrophy), full gene sequence BTK (Bruton agammaglobulinemia tyrosine kinase) (eg, X-linked agammaglobulinemia), full gene sequence CACNB2 (calcium channel, voltage-dependent, beta 2 subunit) (eg, Brugada syndrome), full gene sequence CAPN3 (calpain 3) (eg, limb-girdle muscular dystrophy [LGMD] type 2A, calpainopathy), full gene sequence CBS (cystathionine-beta-synthase) (eg, homocystinuria, cystathionine beta-synthase deficiency), full gene sequence CDH1 (cadherin 1, type 1, E-cadherin [epithelial]) (eg, hereditary diffuse gastric cancer), full gene sequence CDKL5 (cyclin-dependent kinase-like 5) (eg, early infantile epileptic encephalopathy), full gene sequence CLCN1 (chloride channel 1, skeletal muscle) (eg, myotonia congenita), full gene sequence CLCNKB (chloride channel, voltage-sensitive Kb) (eg, Bartter syndrome 3 and 4b), full gene sequence CNTNAP2 (contactin-associated protein-like 2) (eg, Pitt-Hopkins-like syndrome 1), full gene sequence COL6A2 (collagen, type VI, alpha 2) (eg, collagen type VI-related disorders), duplication/deletion analysis CPT1A (carnitine palmitoyltransferase 1A [liver]) (eg, carnitine palmitoyltransferase 1A [CPT1A] deficiency), full gene sequence CRB1 (crumbs homolog 1 [Drosophila]) (eg, Leber congenital amaurosis), full gene sequence CREBBP (CREB binding protein) (eg, Rubinstein-Taybi syndrome), duplication/deletion analysis DBT (dihydrolipoamide branched chain transacylase E2) (eg, maple syrup urine disease, type 2), full gene sequence DLAT (dihydrolipoamide S-acetyltransferase) (eg, pyruvate dehydrogenase E2 deficiency), full gene sequence DLD (dihydrolipoamide dehydrogenase) (eg, maple syrup urine disease, type III), full gene sequence DSC2 (desmocollin) (eg, arrhythmogenic right ventricular dysplasia/cardiomyopathy 11), full gene sequence DSG2 (desmoglein 2) (eg, arrhythmogenic right ventricular dysplasia/cardiomyopathy 10), full gene sequence DSP (desmoplakin) (eg, arrhythmogenic right ventricular dysplasia/cardiomyopathy 8), full gene sequence EFHC1 (EF-hand domain [C-terminal] containing 1) (eg, juvenile myoclonic epilepsy), full gene sequence EIF2B3 (eukaryotic translation initiation factor 2B, subunit 3 gamma, 58kDa) (eg, leukoencephalopathy with vanishing white matter), full gene sequence EIF2B4 (eukaryotic translation initiation factor 2B, subunit 4 delta, 67kDa) (eg, leukoencephalopathy with vanishing white matter), full gene sequence EIF2B5 (eukaryotic translation initiation factor 2B, subunit 5 epsilon, 82kDa) (eg, childhood ataxia with central nervous system hypomyelination/vanishing white matter), full gene sequence ENG (endoglin) (eg, hereditary hemorrhagic telangiectasia, type 1), full gene sequence EYA1 (eyes absent homolog 1 [Drosophila]) (eg, branchio-oto-renal [BOR] spectrum disorders), full gene sequence F8 (coagulation factor VIII) (eg, hemophilia A), duplication/deletion analysis FAH (fumarylacetoacetate hydrolase [fumarylacetoacetase]) (eg, tyrosinemia, type 1), full gene sequence FASTKD2 (FAST kinase domains 2) (eg, mitochondrial respiratory chain complex IV deficiency), full gene sequence FIG4 (FIG4 homolog, SAC1 lipid phosphatase domain containing [S. cerevisiae]) (eg, Charcot-Marie-Tooth disease), full gene sequence FTSJ1 (FtsJ RNA methyltransferase homolog 1 [E. coli]) (eg, X-linked mental retardation 9), full gene sequence FUS (fused in sarcoma) (eg, amyotrophic lateral sclerosis), full gene sequence GAA (glucosidase, alpha; acid) (eg, glycogen storage disease type II [Pompe disease]), full gene sequence GALC (galactosylceramidase) (eg, Krabbe disease), full gene sequence GALT (galactose-1-phosphate uridylyltransferase) (eg, galactosemia), full gene sequence GARS (glycyl-tRNA synthetase) (eg, Charcot-Marie-Tooth disease), full gene sequence GCDH (glutaryl-CoA dehydrogenase) (eg, glutaricacidemia type 1), full gene sequence GCK (glucokinase [hexokinase 4]) (eg, maturity-onset diabetes of the young [MODY]), full gene sequence GLUD1 (glutamate dehydrogenase 1) (eg, familial hyperinsulinism), full gene sequence GNE (glucosamine [UDP-N-acetyl]-2-epimerase/N-acetylmannosamine kinase) (eg, inclusion body myopathy 2 [IBM2], Nonaka myopathy), full gene sequence GRN (granulin) (eg, frontotemporal dementia), full gene sequence HADHA (hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase [trifunctional protein] alpha subunit) (eg, long chain acyl-coenzyme A dehydrogenase deficiency), full gene sequence HADHB (hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase [trifunctional protein], beta subunit) (eg, trifunctional protein deficiency), full gene sequence HEXA (hexosaminidase A, alpha polypeptide) (eg, Tay-Sachs disease), full gene sequence HLCS (HLCS holocarboxylase synthetase) (eg, holocarboxylase synthetase deficiency), full gene sequence HMBS (hydroxymethylbilane synthase) (eg, acute intermittent porphyria), full gene sequence HNF4A (hepatocyte nuclear factor 4, alpha) (eg, maturity-onset diabetes of the young [MODY]), full gene sequence IDUA (iduronidase, alpha-L-) (eg, mucopolysaccharidosis type I), full gene sequence INF2 (inverted formin, FH2 and WH2 domain containing) (eg, focal segmental glomerulosclerosis), full gene sequence IVD (isovaleryl-CoA dehydrogenase) (eg, isovaleric acidemia), full gene sequence JAG1 (jagged 1) (eg, Alagille syndrome), duplication/deletion analysis JUP (junction plakoglobin) (eg, arrhythmogenic right ventricular dysplasia/cardiomyopathy 11), full gene sequence KCNH2 (potassium voltage-gated channel, subfamily H [eag-related], member 2) (eg, short QT syndrome, long QT syndrome), full gene sequence KCNQ1 (potassium voltage-gated channel, KQT-like subfamily, member 1) (eg, short QT syndrome, long QT syndrome), full gene sequence KCNQ2 (potassium voltage-gated channel, KQT-like subfamily, member 2) (eg, epileptic encephalopathy), full gene sequence LDB3 (LIM domain binding 3) (eg, familial dilated cardiomyopathy, myofibrillar myopathy), full gene sequence LDLR (low den
81407Molecular pathology procedure, Level 8 (eg, analysis of 26 50 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of &gt;50 exons, sequence analysis of multiple genes on one platform)
81408Molecular pathology procedure, Level 9 (eg, analysis of &gt;50 exons in a single gene by DNA sequence analysis)
81443Genetic testing for severe inherited conditions (eg, cystic fibrosis, Ashkenazi Jewish associated disorders [eg, Bloom syndrome, Canavan disease, Fanconi anemia type C, mucolipidosis type VI, Gaucher disease, Tay Sachs disease], beta hemoglobinopathies, phenylketonuria, galactosemia), genomic sequence analysis panel, must include sequencing of at least 15 genes (eg, ACADM, ARSA, ASPA, ATP7B, BCKDHA, BCKDHB, BLM, CFTR, DHCR7, FANCC, G6PC, GAA, GALT, GBA, GBE1, HBB, HEXA, IKBKAP, MCOLN1, PAH)
81479Unlisted molecular pathology procedure

References: ACMG Statement on Direct-to-Consumer Genetic Testing. Accessed at www.acmg.net. Last accessed 11/21/2012.

American College of Obstetricians and Gynecologists (ACOG) Committee on Genetics.(1996) Fragile X syndrome. ACOG committee opinion. Int J Gynaecol Obstet. 1996;52(2):209-210.

Banda Y, Kvale MN, Hoffmann TJ, et al.(2015) Characterizing Race/Ethnicity and Genetic Ancestry for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics. Aug 2015; 200(4): 1285-95. PMID 26092716

Chakrabarti L, Davies KE.(1997) Fragile X syndrome. Curr Opin Neurol. 1997;10(2):142-147.

Committee on Genetics, American College of Obstetricians and Gynecologists.(2005) ACOG Committee Opinion. Number 325, December 2005. Update on carrier screening for cystic fibrosis. Obstet Gynecol. Dec 2005; 106(6): 1465-8. PMID 16319281

Counsyl.(2017) Simple screening for inherited health conditions. Available at https://www.counsyl.com. Last accessed November 28, 2017.

Edwards JG, Feldman G, Goldberg J, et al.(2015) Expanded carrier screening in reproductive medicine-points to consider: a joint statement of the American College of Medical Genetics and Genomics, American College of Obstetricians and Gynecologists, National Society of Genetic Counselors, Perinatal Quality Foundation, and Society for Maternal-Fetal Medicine. Obstet Gynecol. Mar 2015; 125(3): 653-662. PMID 25730230

Grant MD, Lauderdale DS.(2002) Cohort effects in a genetically determined trait: eye colour among US whites. Ann Hum Biol. 2002; 29(6): 657-66. PMID 12573082

HAYES, Inc.(2012) Counsyl Universal Genetic Test. September 2012

Henneman L, Borry P, Chokoshvili D, et al.(2016) Responsible implementation of expanded carrier screening. Eur J Hum Genet. Jun 2016; 24(6): e1-e12. PMID 26980105

Kaback MM.(2000) Population-based genetic screening for reproductive counseling: the Tay-Sachs disease model. Eur J Pediatr. Dec 2000; 159 Suppl 3: S192-5. PMID 11216898

Knight SJL, Ritchie RJ, Chakrabarti L, et al.(1996) A Study of FRAXE in Mentally Retarded Individuals Referred for Fragile X Syndrome (FRAXA) Testing in the United Kingdom. Am. J. Hum. Genet. 58:906-913, 1996.

Lazarin GA, Haque IS, Nazareth S, et al.(2012) An empirical estimate of carrier frequencies for 400+ causal Mendelian variants: results from an ethnically diverse clinical sample of 23,453 individuals. Genet Med. 2012 Sep 13. doi: 10.1038/gim.2012.114.

Srinivasan BS, Evans EA, Flannick J, et al.(2010) A universal carrier test for the long tail of Mendelian disease. Reprod Biomed Online. 2010 Oct;21(4):537-51.


Group specific policy will supersede this policy when applicable. This policy does not apply to the Wal-Mart Associates Group Health Plan participants or to the Tyson Group Health Plan participants.
CPT Codes Copyright © 2024 American Medical Association.